Designing Server Rooms

SAGE-AU 2002

Don Gingrich

Designing Server Rooms

- ♦ Why should I do this?
 - ➤ Painful and difficult
 - ➤ But it can be a lot worse if someone else designs it
- ♦ Because it will make my work easier!
- ♦ Few thoughts about shared rooms

Preliminary Considerations

- ♦ What are the *business* requirements?
- ♦ Who will be responsible for what?
- ♦ What is the likely budget for this exercise?
- ♦ What is the starting point?
 - ➤ Renovating an existing room.
 - ➤ Building a completely new room

Renovation of Existing

Advantages

- ♦ Already know what equipment is involved
- ♦ May have part of the required infrastructure
- * Easier to estimate requirements for equipment
- ♦ Power and air-conditioning requirements likely to be known
- May already have a "bad example"

Disadvantages

- ♦ Working around "live" systems
- ◆ Space may be too small
- ♦ Some existing equipment may be junk
- ♦ Can cost more than starting from nothing

Building a New Room

Advantages

- ♦ Can design exactly what is required
- ♦ If part of a complete new structure can have integrated design
- Not bound by previous decisions
- Power and air-conditioning requirements
- ♦ May not have organisa- ♦ Possibly difficult sales job tional standards

Disadvantages

- * Equipment to be installed "appears" after the fact
- ◆ Lead time required may be an issue
- Cost can be a problem since there's one big bill
- Power and air-conditioning requirements partially known

Requirements

- ♦ Power clean and reliable
- ♦ Air Conditioning constant cool temperature and humidity
- ♦ Communications the systems need to communicate
- * Racks storage or support as well as power and communications
- ♦ Fire Protection Ordinary equipment is "not good enough"
- ♦ Security a major reason for building the room

Planning and Politics

- ♦ Often viewed as a "cost"
- * Calculate the business cost of downtime
 - ➤ Employees unable to work
 - ➤ Internet presence "off the air"
 - > Potential loss of data or other assets
- * Estimates of the probability of the risks
- ♦ How does the room design reduce the risks?

Defining the Goals

- ♦ Why is this room being built?
- ♦ Is it likely to grow?
- ♦ Who uses it?
- ♦ What will the requirement be in 5 years? 10?
- ♦ How much space is required?
- ♦ What is absolutely necessary *right now*?
- ♦ If necessary, what could be added in next year's budget?

Power 101 - Key Terms

- ◆ Volts V
- ♦ Amperes A
- \bullet Ohms Ω
- \bullet Power Factor $\cos \Theta$
- ♦ Load the equipment that is doing useful work (and the losses)
- Power Watts W
- ♦ Kilovolt-Amperes kVA
- ♦ Mains the cables that eventually connect back to the generators

Power 101 - Direct Current (DC) Circuit

Diagram of a hand torch showing the electrical circuit

Page 10

Power 101 - Parallel Circuit

Diagram of the electrical system of a car showing a parallel circuit

Power 101 - Alternating Current (AC)

Diagram of a sin wave

Power 101 - Power Factor

Diagram of the sin waves for current and voltage in an example circuit

Power 101 - How it Gets to Us

Representation of the electricity distribution system

Power 101 - What is Out There

- * Reliability of the power supply
 - ➤ Car hits power pole
 - ➤ Underground cable hit by backhoe
 - ➤ Generator workers strike
 - ➤ Lightening hits cable or transformer
- Quality of the power supply
 - ➤ Welder in the building next door
 - ➤ High power motors stoping and starting
 - ➤ Lights at the MCG switch on
 - ➤ Trams drive past

Power 101 - Line Conditioning

- * Electrical Filter reduces the waveform disturbances
- ♦ Typically a "passive" device
- ♦ Cannot fix everything
- * Equipment is still connected to the mains
- \diamond Really big spike or voltage dip will still get through
- \bullet Could not prevent shutdown due to 1/2-1 second outage

Power 101 - Standby UPS

- ♦ Least expensive option
- * 350 VA for under \$200 in shops
- ♦ Might be OK for home
- ♦ Originally had mechanical switching now "solid-state"
- * Saves money by simplicity and reduced requirement for high power components
- ♦ Filter equivalent to line conditioner

Power 101 - Standby UPS

Block schematic of a standby UPS. Image ©American Power Conversion Corp.

Power 101 - Line-Interactive UPS

- ♦ More expensive and sophisticated system
- * 350 VA for under \$500 in shops
- ♦ Probably still primarily a home unit
- ♦ Uses extensive semi-conductor circuits
- ♦ No switching time lag if mains power fails
- ♦ Filter effect superior to line conditioner

Power 101 - Line-Interactive UPS

Block schematic of a Line-Interactive UPS. Image ©APC Corp.

Power 101 - Delta-Conversion UPS

- ♦ More expensive and sophisticated system
- \diamond Not available in small units starts at $\approx 20 \text{ kVA}$
- ♦ Less expensive than "true-online"
- ♦ Less expensive to operate than "true-online"
- ♦ No switching time lag if mains power fails
- ◆ Filter effect superior to line conditioner
- ♦ Frequency could be an issue
- ♦ Sophisticated electronics counteract flaws in the input waveform

Power 101 - Delta-Conversion UPS

Block schematic of an APC Delta-Conversion UPS. Image ©APC Corp.

Power 101 - "True - Online" UPS

- ♦ "Traditional" UPS system
- Not available in small units starts at $\approx 20 \text{ kVA}$
- \bullet Price is $\approx $1000-1250 \text{ AUD / kVA}$
- \blacklozenge Line losses due to double conversion $AC \Longrightarrow DC \Longrightarrow AC$
- ♦ No switching time lag if mains power fails since continuously online
- ♦ Filter effect superior to line conditioner since the AC in and out are isolated from each other
- ♦ Will maintain constant frequency if connected to a generator

Power 101 - "True - Online" UPS

Block schematic of a Line-Interactive UPS. Image ©APC Corp.

Power 101 - "True - Online" UPS Problems

- ♦ All power is first rectified (converted to DC)
- ◆ DC power is inverted (Converted to AC)
- ♦ Full wave rectifiers push harmonics onto the supply system
- ♦ Harmonics can affect other electricity users
- ♦ Utilities are beginning to charge extra for harmonic distortion
- ♦ Power factor problems can also occur
- Power factor affects utility bills

Page 25

Power 101 - Power Conditioning

- ♦ Interactive system similar to the Delta-Conversion circuit)
- ◆ Provides the inverse of the harmonics to remove them from the line
- \diamond Can provide savings of $\approx 10\text{-}20\%$ on electricity bills
- ♦ Cost of \$10,000 for 40 kVA unit
- ♦ Simpler and less expensive systems that use large capacitors are also available

Page 26

• Capacitor systems primarily improve power factor

Power 101 - Power Conditioning

Diagram of an MGE SineWave Active Harmonic Filter with input and output waveforms. ©MGE UPS Systems.

Power 101 - Continuity of Supply

- ♦ Generally the continuity of electrical supply is good
- ♦ In CBD areas an outage of more than $1\frac{1}{2}$ to 2 hours is highly unlikely
- * Away from the CBD but still in urban areas still reasonably safe
- ♦ But if continuous operation is critical just an UPS may not be enough

Power 101 - Transfer Switch

- ♦ Big electrical systems are typically supplied from multiple sources
- ♦ Unsafe to connect these sources continuously
- * Automatic transfer switch connects to secondary supply if the primary fails
- UPS maintains the continuity of supply during the switchover
- UPS protects against switching spikes and noise

Power 101 - Generators

- ♦ High cost option
- Purchase price
- ♦ Maintenance and testing
- * Remember to make sure the fuel tank is full
- Depending on the size of the tank can supply power for days

Power 101 - Conclusions

- \diamond More money = more security of supply
- ♦ A classic case of the "90 / 10" rule
- ♦ When setting up UPS systems remember ancillary equipment
 - ➤ Air-conditioning
 - ➤ Lighting
 - > Security systems
- lacktriangledown **Test** the system
- ♦ Set up automatic monitoring and shutdown to protect data
- ♦ Also needs an easily accessible "Panic Button"

Floor Systems

- * Conventional approach to computer rooms is to have a raised floor
- ♦ Power supply system under the floor
- ♦ Communications cables may route under the floor
- ♦ Air-conditioning may also be supplied through the under floor space
- * Easily removable floor tiles for access to the underfloor space

Floor Systems

A good floor system should:

- * Be strong enough to support the equipment
- * Be able to support moving equipment
- Be designed to be anti-static to reduce the danger to equipment
- Be relatively dust free to reduce the need for cleaning
- \bullet Have a suitable ramp to allow movement of equipment or
- * Be on the same level as the normal floor

Available Floor Systems

- ♦ MDF Core tiles (with or without metal sheathing
- ♦ All Steel tiles
- ♦ Concrete supports at the corners of the tiles
- ♦ Steel adjustable supports at the corners (These may have pins to lock into the tiles)
- ♦ Steel adjustable supports with steel "stringers" to connect the supports and support the edge of the tiles

Floor System Cost and Specifications

- ♦ Costs can range from \$125 to \$275 per square meter
- ♦ Installation is generally included
- ♦ Installation will cost more on weekends this may be necessary for a renovation project
- ♦ Floor loads are expressed as the load on a 25mm square
 - \triangleright Low end equipment at around 3kN or $\approx 300 \text{kg}$
 - \triangleright Top of the range ratings are $\approx 6 \text{kN}$ or 600 kg
- * Remember that the "real" floor also needs to support this mass
- * A properly designed raised floor will distribute the load to the "real" floor

Other Floor Considerations

- * Removing the old floor for a renovation job
- \diamond In a new building consider having *all* of the floor raised
- * Have the contractor cut holes in a number of the tiles
- ♦ Get extra tiles for future modification requirements
- ♦ If the room is designed for expansion make sure the floor takes this into consideration
- \diamond UPS battery cabinets and data storage safes are heavy

Air Conditioning - General Issues

- ♦ Machine room air conditioning is special
 - \triangleright Lower temperatures than offices (20°C)
 - \triangleright 24x7 operation
 - ➤ Cooling in mid-winter not quite as unusual any more
 - ➤ Potential problems with humidity
- ♦ Property services groups often do not appreciate these issues
- ♦ Consultants may miss the issues also, depending on their focus

Refrigeration Type Air Conditioning

- A Hot air to Outside
- B Fan to help improve heat transfer from coils to outside.
- C Fan for more efficient transfer of cool air to inside.
- D Expansion Valve
- E Compressor
- F Cool Air to Inside

Diagram of Refrigerant Type Air-Conditioner

Chilled Water Air Conditioning

Diagram of a chilled water air conditioning system that operates from heat input

Chilled Water Air Conditioning

Diagram of a chilled water air conditioning system

Air Conditioning - Chillers

Refrigeration systems are not the only option

- ♦ Chilled water
- ♦ Large system on roof or in mechanical room
- ♦ Generally uses a "cooling tower"
 - ➤ Can be a source of Legionella
 - ➤ High maintenance
- ♦ Water in the vicinity of the machine room is a risk
- But can be used to achieve lower temperatures

Air Conditioning - Chillers continued

- ♦ Depending on property management strategy may not run 24x7
- ♦ Potentially a single point of failure
- ♦ Will probably still need humidity control
- ♦ Can have the wet part in the next room
 - ➤ Use ducting to carry cold air to where it is needed
 - ➤ Both output and return ducts may be required
 - > Suitable drains to protect the machine room

Page 42

Air Conditioning - Conclusions

- ♦ Make sure that property services and consultants understand requirements
- * At a room temperature of $20^{\circ}C$ the CPU temperature may approach $50^{\circ}C$
- ♦ This will only get worse as the speed of systems increase
- Relying on a single system may be too much of a risk
- ♦ If using several smaller systems the controls should allow integrated operation

Air Conditioning - Humidity

- ♦ Low Humidity is not an obvious issue
 - > Static electricity
 - ➤ Air conditioner icing problems
 - > 50% is about right
- ♦ High humidity is no good either
 - ➤ Moisture and electrical circuits
 - > Corrosion
 - ➤ Non-condensing
- ♦ Why low humidity can contribute to icing
- ♦ PHB and the evaporative cooler

- ♦ If an attacker gains physical access to machines game over
- But remember that backup tapes are potentially an equal risk
- * Access control is required
 - ➤ Keyed lock
 - ➤ Digital keypad locking system
 - ➤ Swipe card system centrally controlled
- ♦ Central control can mean that *they* think that they control who has access

- * Swipe cards can control both who and when
- Who needs to be on the access list?
- ♦ When do they need access?
- ◆ Political hot potato management support of policy is required
 - ➤ CEO and managers do not really need access
 - ➤ Better to escort them and be able to explain features
 - > Tradespeople
 - > Contract cleaners
- ♦ Maybe it's just paranoia, but a cleaner seems to have an ideal opportunity for espionage

- ♦ Escort anyone who is not an administrator
 - ➤ Unintentional damage
 - ➤ Power disturbances
 - ➤ Moving delicate equipment
 - ➤ Dust and dirt

- ♦ Video recording system
 - ➤ A record of what happened
 - ➤ May be important if there are access issues
 - Possibly vital in a shared room

Tape Storage

- ♦ Off site storage is best
- ♦ But some on site storage improves speed of restore
- * Fire-resistant safe
- ♦ These are seriously heavy
- ♦ Consider making duplicates to send off site

Fire Suppression

- ♦ Sprinkler systems Help!
- ♦ Dry chemical fire extinguishers Oh No!
- \diamond Ordinary CO_2 fire extinguishers still a problem
- ♦ Specialised systems are required
 - ➤ Halon was great but an environmental disaster
 - \triangleright Bulk CO_2 is an option
 - ➤ Inergen seems like a good idea since it allows breathing
 - ➤ Automatic system

Rack Systems

The argument in favour of generic racks

- ♦ Generic racks can be adapted to a variety of equipment
- ♦ Can provide a consistent and integrated appearance
- Can be customised to meet local needs
 - ➤ Adding a communications conduit on the side opposite the power
 - ➤ Three-phase power for large systems
 - Two single phase supplies for redundant power supplies
- ♦ Can be cheaper than proprietary racks of equal quality

Proprietary Racks

- \spadesuit May be a problem to mount "Brand x" equipment
- ♦ May provide specialised features for the particular equipment
- ♦ Built-in UPS systems
- ♦ A "Beige Wall" of a particular brand equipment may look impressive
- ♦ But this may lock you into equipment from the supplier

Communications Cabling

- **♦** Under floor
- On walls
- ♦ Suspended from the roof

Under Floor

- Out of sight
- ♦ Power is usually there also
- * Electrical induction can be an issue
- ◆ Induction not an issue with fibre
- ♦ Disciplined approach to installing and removing cables

Roof or Walls

- ♦ In clear view
- ♦ Usually away from the power circuits
- ♦ In cable trays clear covers? easily removable
- ♦ Could look messy even if it is a lot neater than an under floor

Who Owns the Communications

- ♦ Central group
 - > Problem with the control
 - ➤ May need large risers into the room and a local patch panel
 - ➤ Having a requirement that the central group does all comms is often inefficient
- ♦ Locally administered
 - Communications hub in a corner of the room is easy to manage
 - ➤ Main routers and backbone switching
 - ➤ Interconnections for the systems in the room
- ♦ Whatever you do remember spare ports for growth

Other issues

- ♦ Mains panel with space for more circuit breakers
 - > Saves or eliminates downtime when adding powerpoints
 - ➤ Upgrading the panel in future is expensive
 - ➤ Price difference upfront is minimal
- ♦ Monitoring systems
 - > Temperature
 - ➤ Humidity
 - ➤ Power supply
 - > Critical systems

Finding Suppliers

- ♦ Organisation may have preferred contractors
- ♦ The World Wide Web many companies publish a lot of information
- ♦ The Yellow Pages
- ♦ SAGE-AU Mailing list
 - > Off the record
 - ➤ Good and bad stories
 - ➤ Still your decision

Project Management and Co-Ordination

- ♦ Keeping it all on track
- ◆ Define the critical path
- ♦ Check with the contractors to make sure they can meet their targets
- * Build a bit of slack into the timetable
- ♦ Possibly work backwards from the target time

Renovation Project Considerations

- * Keeping critical systems online
- ♦ Protecting systems from the works
- ***** Liaison with the contractors
 - ➤ Get them what they need
 - ➤ Make sure they meet the requirements
- ♦ Is temporary power or air conditioning an option?
- ♦ The inevitable spanner in the works

Machine Room Projects

Good Luck!

References

- flashlight.gif from http://www.uvi.edu/Physics/SCI3xxWeb/Electrical/Circuits.html
- battery http://www.nmsea.org/Curriculum/4_6/Electricity/dc_electricity.htm
- power-factor http://www.traceengineering.com/technical/tech_notes/tn11.html
- ◆ Transmission http://www.howstuffworks.com/power.htm
- http://www.eng.nus.edu.sg/mpe/staff/mpengkc.html
- chiller diagrams and information http://www.pttplc.com/cscng/absorption_chiller.asp
- ♦ More air conditioning and chiller stuff http://www.howstuffworks.com/ac.htm
- ♦ See conference paper for further references